L. Caminada B. Kilminster A. Macchiolo B. Meier M. Senger S. Wiederkehr
May 25th 2021 Matías Senger

Presentation layout

Introduction

Future HEP experiments will require not only spatial but also temporal resolution in the tracker .

The so called 4D pixels are under strong development to provide accurate time+space tracking of Minimum Ionizing Particles (MIPs).

Sensors

A number of technologies under development :

Readout

Add new capability with Time to Digital Converters (TDC) to digitize the timing information.

Long term goal: "Full ASIC" for 4D pixels.

Today I will focus on the timing digitizer, TDC.

TDC designs

General idea

A closed chain of inverters + a counter:

3 designs have been produced and tested based on this concept:

  1. Fully digital TDC. UMC 110 nm technology.
  2. Semi analog TDC. L Foundry 110 nm technologyThis design was also produced with UMC110 technology. The production with LF110 technology, however, yields better results and this one is discussed in this talk..
  3. Fully analog TDC. (Not discussed today.)

Fully digital TDC

Working principle

  1. START and STOP at low level. The ring is open; no oscillation.
  2. START changes to high. The ring is closed; begins to oscillate.
  3. The counter counts number of full loops.
  4. STOP changes to high. The state of the system is registered by the flip-flops and the counter.

Semi analog TDC

Working principle

  1. START and STOP at low level. Ring does not oscillate.
  2. START changes to high. The ring starts to oscillate (it is properly initialized, not shown in the block diagram).
  3. The counter counts the number of full loops.
  4. STOP changes to high. The inverters are "analogly frozen" in whatever state they were. The one inverter that was commuting is frozen in an intermediate state.

Summary of the two designs

We can view each TDC as a black box:

Test setup

A specialized test setup was assembled.

A picture of the setup (human not shown 😁):

Results

Fully digital TDC

Raw data shown in the histogram below.

Time resolution

We can think of this as an imperfect ruler:

In view of this, I will look at the following quantities:

  1. Mean.
  2. Standard deviation $\sigma$.
  3. Width of the distribution measured as $q_{95\text{ %}} - q_{5\text{ %}}$ where $q_x$ is the $x$ percent quantile.

Mean time of each output

Dispersion of each output

This plot shows $\sigma$ and $q_{95\text{ %}} - q_{5\text{ %}}$ together.

Time resolution of the fully digital TDC

Let's see the distribution of the temporal dispersion of the outputs:

Temporal resolution for this TDC:

Semi analog TDC

Raw data looks like this:

Let's normalize all the INV[:] signals and invert the odd ones:

Now we digitize them with a "low resolution ADC":

Digitized INV[:] now looks like this:

This procedure on real data:

1 bit
2 bit
3 bit

Time resolution

Repeat the same analysis as for the "fully digital" varying the number of discrete levels.

q95 % - q5 %
Standard deviation

Temporal resolution for this TDC:

Required space in the pixels

Reference pixel of 50×50 µm2 :

Fully digital TDC

Current implementation:

  • 21 inverters and 7 bits counter.
  • Up to $\approx 150 \text{ ns}$.
  • Does not fit in a 50×50 µm2 pixel.

Semi analog TDC

Current implementation:

  • 9 inverters and 5 bits counter.
  • Up to $\approx 100 \text{ ns}$.
  • Fits fine in a 50×50 µm2 pixel.

Will require more complicated readout logic, however this is in the periphery.

Further perspectives

Conclusions

References

LHC schedule overview. https://project-hl-lhc-industry.web.cern.ch/content/project-schedule. Accessed May 2021. Strategic R&D Programme on Technologies for Future Experiments. https://cds.cern.ch/record/2649646, December 2018. Number: CERN-OPEN-2018-006. Paternoster, G., G. Borghi, R. Arcidiacono, M. Boscardin, N. Cartiglia, M. Centis Vignali, G. F. Dalla Betta, et al. “Novel Strategies for Fine-Segmented Low Gain Avalanche Diodes.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 987 (January 21, 2021): 164840. https://doi.org/10.1016/j.nima.2020.164840. Tornago, M., R. Arcidiacono, N. Cartiglia, M. Costa, M. Ferrero, M. Mandurrino, F. Siviero, et al. “Resistive AC-Coupled Silicon Detectors: Principles of Operation and First Results from a Combined Analysis of Beam Test and Laser Data.” ArXiv:2007.09528 [Physics], October 16, 2020. http://arxiv.org/abs/2007.09528. Paternoster, G., G. Borghi, M. Boscardin, N. Cartiglia, M. Ferrero, F. Ficorella, F. Siviero, A. Gola, and P. Bellutti. “Trench-Isolated Low Gain Avalanche Diodes (TI-LGADs).” IEEE Electron Device Letters 41, no. 6 (June 2020): 884–87. https://doi.org/10.1109/LED.2020.2991351. Currás, E., M. Carulla, M. Centis Vignali, J. Duarte-Campderros, M. Fernández, D. Flores, A. García, et al. “Inverse Low Gain Avalanche Detectors (ILGADs) for Precise Tracking and Timing Applications.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 958 (April 2020): 162545. https://doi.org/10.1016/j.nima.2019.162545. Characterization of delay in PSI test setup, Matías Senger, https://msenger.web.cern.ch/characterization-of-delay-in-psi-test-setup/. “Fully digital” TDC characterization, Matías Senger, https://msenger.web.cern.ch/fully-digital-tdc-characterization/.

Footnotes